Early interactions of Salmonella enterica serovar typhimurium with human small intestinal epithelial explants.
نویسندگان
چکیده
BACKGROUND Salmonella enterica serovar typhimurium (S typhimurium) causes invasive gastroenteritis in humans, a disease involving significant penetration of the intestinal mucosa. However, few studies have been undertaken to investigate this interaction directly using differentiated human gut tissue. AIMS To investigate the early interactions of an enteropathogenic strain of S typhimurium with human intestinal mucosa using human intestinal in vitro organ culture (IVOC). METHODS Wild-type and mutant derivatives of S typhimurium TML were used to compare interactions with cultured human epithelial cells, bovine ligated loops, and human intestinal IVOC. RESULTS S typhimurium TML was shown to attach to cultured Caco-2 brush border expressing cells and cause tissue damage and fluid accumulation in a ligated bovine loop model.S typhimurium TML bound predominantly to the mucus layer of human IVOC explants during the first four hours of IVOC incubation. From four to eight hours of IVOC incubation, small but characteristic foci of attaching and invading S typhimurium TML were detected as clusters of bacteria interacting with enterocytes, although there was no evidence for large scale invasion of explant tissues. Ruffling of enterocyte membranes associated with adherent Salmonella was visualised using electron microscopy. CONCLUSIONS Human IVOC can be used as an alternative model for monitoring the interactions between S typhimurium and human intestinal epithelium, thus potentially offering insight into the early stages of human Salmonella induced gastroenteritis.
منابع مشابه
SMALL INTESTINE Early interactions of Salmonella enterica serovar typhimurium with human small intestinal epithelial explants
Background: Salmonella enterica serovar typhimurium (S typhimurium) causes invasive gastroenteritis in humans, a disease involving significant penetration of the intestinal mucosa. However, few studies have been undertaken to investigate this interaction directly using differentiated human gut tissue. Aims: To investigate the early interactions of an enteropathogenic strain of S typhimurium wit...
متن کاملMultilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals
Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using m...
متن کاملمقایسه پلیمورفیسم ژنومی و ارتباط ژنتیکی سویههای بالینی سالمونلا انتریکا سرووار تیفی موریوم در استان کرمان به روش ERIC- PCR و Box-PCR
Introduction: Salmonella is one of the most important causes of gastroenteritis in humans. Salmonella enterica Serovar Typhimurium has many hosts in addition to humans, and its prevalence in the community is high. The aim of the study was comparing the genetic diversity of Salmonella enterica serovar Typhimurium isolated from human fecal samples by both of ERIC-PCR and BOX-PCR method. Methods:...
متن کاملInduction of Apoptosis in Cultured Intestinal Epithelial Cells by Adhesin of Salmonella enterica serovar Typhimurium
Bacterial virulence mechanisms stem from the selective pressure of host environment and Salmonella enterica serovar Typhimurium (S. typhimurium) is an ideal example of this [1]. S. typhimurium causes self-limiting gastroenteritis and poses serious health problem in the regions of unhygienic conditions. Adhesin mediated attachment of enteric pathogens to host intestinal mucosa is an important ea...
متن کاملInteraction of Salmonella enterica Serovar Typhimurium with Intestinal Organoids Derived from Human Induced Pluripotent Stem Cells
The intestinal mucosa forms the first line of defense against infections mediated by enteric pathogens such as salmonellae. Here we exploited intestinal "organoids" (iHOs) generated from human induced pluripotent stem cells (hIPSCs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs. Imaging and RNA sequencing were used to analyze these interactions, and clear chang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Gut
دوره 53 10 شماره
صفحات -
تاریخ انتشار 2004